Improvement in nitrogen fixation capacity could be part of the domestication process in soybean

N Muñoz,X Qi, M-W Li,M Xie, Y Gao, M-Y Cheung, F-L Wong,H-M Lam

HEREDITY(2016)

引用 43|浏览16
暂无评分
摘要
Biological nitrogen fixation (BNF) in soybeans is a complex process involving the interplay between the plant host and the symbiotic rhizobia. As nitrogen supply has a crucial role in growth and development, higher nitrogen fixation capacity would be important to achieve bigger plants and larger seeds, which were important selection criteria during plant domestication by humans. To test this hypothesis, we monitored the nitrogen fixation-related performance in 31 cultivated and 17 wild soybeans after inoculation with the slow-growing Bradyrhizobium diazoefficiens sp. nov. USDA110 and the fast-growing Sinorhizobium (Ensifer) fredii CCBAU45436. Our results showed that, in general, cultivated soybeans gave better performance in BNF. Electron microscopic studies indicated that there was an exceptionally high accumulation of poly-β-hydroxybutyrate bodies in bacteroids in the nodules of all wild soybeans tested, suggesting that the C/N balance in wild soybeans may not be optimized for nitrogen fixation. Furthermore, we identified new quantitative trait loci (QTLs) for total ureides and total nodule fresh weight by employing a recombinant inbred population composed of descendants from a cross between a cultivated and a wild parent. Using nucleotide diversity (θπ), divergence index ( F st ) and distribution of fixed single-nucleotide polymorphisms as parameters, we found that some regions in the total ureides QTL on chromosome 17 and the total nodule fresh weight QTL on chromosome 12 exhibited very low diversity among cultivated soybeans, suggesting that these were traits specially selected during the domestication and breeding process.
更多
查看译文
关键词
Quantitative trait,Biomedicine,general,Human Genetics,Evolutionary Biology,Ecology,Cytogenetics,Plant Genetics and Genomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要