Activation Of Peroxymonosulfate By Calcined Electroplating Sludge For Ofloxacin Degradation

CHEMOSPHERE(2021)

引用 24|浏览4
暂无评分
摘要
Developing cost-effective metal/metal oxides for peroxymonosulfate (PMS) activation remains a key issue in the sulfate radical based advanced oxidation process. In this work, electroplating sludge (ES), a transition metal-rich byproduct, was anaerobic calcined and characterized. Then, calcined electroplating sludge (CES) was applied as PMS activator for degradation of ofloxacin (OFL) and CES/PMS system exhibited a nearly 90% of OFL removal in 60 min. In addition, effect of CES, PMS, the initial pH and water constituents (chloride, bicarbonate, natural organic matter (NOM) and water backgrounds) on OFL degradation were systematically studied. Moreover, radical quenching tests and electron spin-resonance spectroscopy studies manifested that both SO4 center dot- and HO center dot were the ruling reactive oxygen species. X-ray photoelectron spectroscopy results of the fresh and used CES demonstrated that the PMS activation mainly occur in the transformation from Fe3+ (Cu2+) to Fe2+ (Cu+). Furthermore, liquid chromatography coupled with ion trap time-of-flight mass spectrometry was used to illustrate the possible degradation pathway of OFL. Moreover, CES showed excellent stability and reusability during reaction. This work points out a new way for value-added reuse for ES as a cost-efficient activator of PMS for organic contaminant removal. (C) 2020 Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Peroxymonosulfate, Calcined electroplating sludge, Ofloxacin, Activation mechanism, Degradation mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要