Blockade of IDO/TDO downstream effectors restricts cancer immune suppression

JOURNAL OF IMMUNOLOGY(2019)

引用 0|浏览17
暂无评分
摘要
Abstract Immune checkpoint blockade (ICB) results in clinical benefit for a subset of cancer patients, yet multiple mechanisms of resistance can impair optimal response. The catabolism of tryptophan into metabolites known as kynurenines (Kyn) by the expression of enzymes such as IDO or TDO is a frequent phenomenon that plays a suppressive role in tumor immunity. Recently it was shown that Kyn acts as agonist of the aryl hydrocarbon receptor (AHR). Here we sought to characterize the mechanisms of immune suppression associated with the AHR pathway and to evaluate its potential as therapeutic target. RNAseq analysis of human cancers revealed a correlation between the expressions of AHR-related genes with markers associated with immunotherapy resistance (PD-1, FOXP3, CD206). By using IDO or TDO-overexpressing variants of a melanoma cell model (B16-F10), we found that myeloid cells, such as tumor-associated macrophages (TAMs) and dendritic cells (DCs), present up-regulation of the AHR. IDO-expressing tumors (B16-IDO) show higher myeloid cell infiltration, which present a tolerogenic phenotype. Tumor-antigen specific CD8T cells present reduced expression of activation markers and proliferation rate when primed by Kyn-treated BMDCs. Treatment of B16-IDO-bearing mice with an AHR-specific antagonist (CH-223191) leads to an increase of MHC II in TAMs, of activation markers in CD8 T cells and reduced frequency of T-regs. AHR inhibition delays progression of tumors with an active IDO/TDO/Kyn pathway (B16-IDO and B16-TDO), and efficacy is further improved when ICB is used in combination. In summary, our findings demonstrate that targeting the Kyn pathway through AHR inhibition could overcome key suppressive mechanisms and sensitize tumors to ICB.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要