Enhanced Light-Absorption of Black Carbon in Rainwater Compared With Aerosols Over the Northern Indian Ocean

JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES(2020)

引用 7|浏览19
暂无评分
摘要
Black carbon (BC) aerosols affect climate, especially in high aerosol loading regions such as South Asia. A key uncertainty for the climate effects of BC is the evolution of light-absorbing properties in the atmosphere. Here, we present a year-round comparison of the mass absorption cross section (MAC; 678 nm) of BC in air (PM10) and rain, for samples collected at the Maldives Climate Observatory at Hanimaadhoo. We develop a filter-loading correction scheme for estimating BC absorption on filters used in high-volume samplers. The year-round average MAC(678) of BC in the rain is almost twice (13.3 +/- 4.2 m(2)/g) compared to the PM10 aerosol (7.2 +/- 2.6 m(2)/g). A possible explanation is the elevated ratio of organic carbon (OC) to BC observed in rain particulate matter (9.4 +/- 6.3) compared to in the aerosols (OC/BC 2.6 +/- 1.4 and water-insoluble organic carbon/BC 1.2 +/- 0.8), indicating a coating-enhancement effect. In addition to BC, we also investigated the MAC(365) of water-soluble brown carbon in PM10 (0.4 +/- 0.4 m(2)/g, at 365 nm). In contrast to BC, MAC(365)brown carbon relates to air mass history, showing higher values for samples from air originating over the South Asian landmass. Furthermore, calculated washout ratios are much lower for BC compared to OC and inorganic ions such as sulfate, implying a longer atmospheric lifetime for BC. The wet deposition flux for BC during the high loading winter was 3 times higher than during the wet summer, despite much less precipitation in the winter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要