The Effect Of The Scalp On The Effectiveness Of Bicycle Helmets' Anti-Rotational Acceleration Technologies

TRAFFIC INJURY PREVENTION(2021)

引用 5|浏览12
暂无评分
摘要
ObjectiveMedical data has lead to the common understanding that bicycle helmets need to be improved to better protect against brain injuries resulting from rotational acceleration. Although many different technologies exist for reducing rotational acceleration during impacts, the lack of an official testing standard means that their evaluation is based on customized set-ups that may differ and not represent real accident conditions. Previously, the authors have shown that scalp tissue plays an important role during helmet testing by absorbing energy and creating a low friction interface between head and helmet, thus reducing rotational accelerations and velocities. However, no published study has yet examined the effectiveness of anti-rotational helmet technologies in the presence of a biofidelic scalp layer. The objective of this study is to address this gap.MethodsThree different commercially available helmet models, each one equipped with a different technology, were tested in the presence of scalp tissue, in two different scenarios; with and without the technology present. The effectiveness of each of these technologies is already documented in other studies, but only in the absence of a biofidelic scalp layer. Tests were carried out using HIII headform with porcine scalp attached to the outmost layer. Motion tracking was used to compare the impact kinematics of each helmet model in both scenarios.ResultsResults showed that when a biofidelic scalp layer is present, there is no statistical difference between helmet models with and without the anti-rotational technology in terms of rotational acceleration, velocity, relative rotation, impact duration and injury risk.ConclusionsResults suggest that the presence of the scalp can obscure the functionality of anti-rotational acceleration technologies. This could indicate that the effectiveness of technologies tested in previous studies, which have not tested anti-rotational acceleration technologies in the presence of a realistic scalp layer, may exaggerate the contribution of such technologies if compared with a more biofidelic set-up. The study supports the fact that headforms should be better designed by incorporating artificial skin layers that can better imitate scalp's behavior and, in addition, provides insights for the design of technologies against rotational acceleration.
更多
查看译文
关键词
Head injuries, scalp, bicycle helmet, standard tests, friction coefficient, rotational acceleration
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要