Optical and Thermal Properties of Selective Absorber Coatings Under CSP Conditions

AIP Conference Proceedings(2017)

引用 9|浏览16
暂无评分
摘要
Concentrating solar power (CSP) systems use solar absorbers to convert sunlight into thermal electric power. In CSP systems, a high reflective surface focuses sunlight onto a receiver that captures the solar energy and converts it into heat. The operation of high efficiency CSP systems involves improvements in the performance of the coatings of the solar absorption materials. To accomplish this, novel, more efficient selective coatings are being developed with high solar absorptance and low thermal losses at their operation temperature. Heat losses in a CSP system occur by three mechanisms: conduction, convection and radiation. It has been widely documented that energy losses increase with increasing operating temperature of CSP systems, and the precise knowledge of the thermophysical properties of the materials involved in CSP systems may allow us to increase the efficiency of systems. In this work, we applied the pulsed photoradiometry technique (PPTR) to evaluate the changes in the thermophysical properties of selective coatings on a variety of substrates as a function of temperature. Three types of coatings deposited with two different techniques on three types of substrate were examined: commercial coatings based on titanium oxynitride deposited by sputtering on substrates of copper and aluminum, coatings based on black nickel deposited by electrochemical methods on substrates of steel, and coatings based on black cobalt deposited by electrochemical methods on substrates of steel and copper. Values of the thermal diffusivity and thermal conductivity were obtained in the temperature range of 25 to 550 degrees C. Optical reflectance measurements have been performed in order to provide an estimate of the dependence of the thermal emittance on temperature using the black body radiation theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要