Irreversible Neuronal Damage Begins Just After Aneurysm Rupture in Poor-Grade Subarachnoid Hemorrhage Patients

Translational Stroke Research(2020)

引用 7|浏览15
暂无评分
摘要
Pathophysiological findings of early brain injury in humans have not permitted conclusive determinations. We explored the essence of this phenomenon by taking intraoperative cortical specimens of Hunt-Kosnik grades IV~V (poor-grade) subarachnoid hemorrhages (SAH). From 2013 to 2017, we treated 39 consecutive poor-grade patients in 226 cases of aneurysmal SAH. Fourteen of the 39 patients agreed to this study following written informed consent. We took specimens from untouched areas prior to surgical intervention: cortex near the ruptured aneurysm for clipping, convexity cortex for cerebral ventricular drainage. Cortical specimens were stained with hematoxylin-eosin, anti-cleaved caspase-3, and anti-DNA/RNA damage staining. Positive signals were calculated in six random, high-power fields for quantitative assessment. Double immunofluorescence was done to evaluate neural damage. Chi-square analyses were carried out to assess the correlation between the Glasgow Outcome Scale at 90 days after the ictus and the number of positive cells. Cortical specimens were taken at 12.7 ± 7.00 h after the first ictus. All 14 cases showed dense nuclei, with the appearance of acidic and shrunken cytoplasms. Diffuse positivity of anti-cleaved caspase-3 and anti-DNA/RNA damage was detected. Cleaved caspase-3 was detected in 68% of neurons, and DNA/RNA damage was detected in 64% of neurons. Positive reactions of both antibodies indicated poor outcome. With poor-grade cases, irreversible ischemic, apoptotic, and oxidative changes were detected in the cerebral cortex within several hours after the ictus. Those changes occurred far from the aneurysm. Our findings suggest that a revolution is needed in the treatment strategy for poor-grade SAH.
更多
查看译文
关键词
Ischemia,Pathophysiology,Poor-grade,Subarachnoid hemorrhage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要