Shear Stress Associated With Cardiopulmonary Bypass Induces Expression Of Inflammatory Cytokines And Necroptosis In Monocytes

JCI INSIGHT(2021)

引用 19|浏览24
暂无评分
摘要
Cardiopulmonary bypass (CPB) is required during most cardiac surgeries. CBP drives systemic inflammation and multiorgan dysfunction that is especially severe in neonatal patients. Limited understanding of molecular mechanisms underlying CPB-associated inflammation presents a significant barrier to improve clinical outcomes. To better understand these clinical issues, we performed mRNA sequencing on total circulating leukocytes from neonatal patients undergoing CPB. Our data identify myeloid cells, particularly monocytes, as the major cell type driving transcriptional responses to CPB. Furthermore, IL-8 and TNF-alpha were inflammatory cytokines robustly upregulated in leukocytes from both patients and piglets exposed to CPB. To delineate the molecular mechanism, we exposed THP-1 human monocytic cells to CPB-like conditions, including artificial surfaces, high shear stress, and cooling/rewarming. Shear stress was found to drive cytokine upregulation via calcium-dependent signaling pathways. We also observed that a subpopulation of THP-1 cells died via TNF-alpha-mediated necroptosis, which we hypothesize contributes to post-CPB inflammation. Our study identifies a shear stress-modulated molecular mechanism that drives systemic inflammation in pediatric CPB patients. These are also the first data to our knowledge to demonstrate that shear stress causes necroptosis. Finally, we observe that calcium and TNF-alpha signaling are potentially novel targets to ameliorate post-CPB inflammation.
更多
查看译文
关键词
Calcium signaling,Cardiology,Cytokines,Inflammation,Surgery
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要