Tumor Cell Invasiveness In The Initial Stages Of Bladder Cancer Development - A Computational Study

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING(2021)

引用 3|浏览15
暂无评分
摘要
Bladder cancer is one of the most common types of cancer, being the sixth more frequent in men, and one with higher recurrence rates and overall treatment costs. We introduce an agent-based computational model of the urothelium, adopting a Cellular Potts Model (CPM) approach to describe both a healthy urothelium and the development of bladder cancer. We focus on the identification of the conditions in which cancer cells cross, by mechanical means, the basement membrane and invade the bladder lamina propria. When within the urothelium the tumor grows in a very constrained environment. These tight conditions imply that the urothelium layer where the tumor initiates greatly determines tumor growth and invasiveness. Moreover, we demonstrate how specific mechanical properties of the cancer cells, as their stiffness or the adhesion to neighboring cells, heavily modulate the critical initial moments of tumor development. We propose that these characteristics should be considered as therapeutic targets to control tumor growth.
更多
查看译文
关键词
bladder cancer, cancer therapies, cell mechanics, Cellular Potts Model, invasive tumor, papillary tumor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要