Nonequilibrium dynamics of adaptation in sensory systems.

Physical review. E(2022)

引用 1|浏览1
暂无评分
摘要
Adaptation is used by biological sensory systems to respond to a wide range of environmental signals, by adapting their response properties to the statistics of the stimulus in order to maximize information transmission. We derive rules of optimal adaptation to changes in the mean and variance of a continuous stimulus in terms of Bayesian filters and map them onto stochastic equations that couple the state of the environment to an internal variable controlling the response function. We calculate numerical and exact results for the speed and accuracy of adaptation and its impact on information transmission. We find that, in the regime of efficient adaptation, the speed of adaptation scales sublinearly with the rate of change of the environment. Finally, we exploit the mathematical equivalence between adaptation and stochastic thermodynamics to quantitatively relate adaptation to the irreversibility of the adaptation time course, defined by the rate of entropy production. Our results suggest a means to empirically quantify adaptation in a model-free and nonparametric way.
更多
查看译文
关键词
adaptation,dynamics,systems,non-equilibrium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要