Core-Shell Nanosystems For Self-Activated Drug-Gene Combinations Against Triple-Negative Breast Cancer

ACS APPLIED MATERIALS & INTERFACES(2020)

引用 39|浏览7
暂无评分
摘要
The combination of gene therapy with chemotherapeutics provides an efficacious strategy for enhanced tumor therapy. RNA-cleaving DNAzyme has been recognized as a promising gene-silencing tool, while its combination with chemotherapeutic drugs has been limited by the lack of an effective codelivery system to allow sufficient intracellular DNAzyme activation, which requires specific metal ions as a cofactor. Here, a self-activatable DNAzyme/drug core-shell codelivery system is fabricated to combat triple-negative breast cancer (TNBC). The hydrophobic chemotherapeutic, rapamycin (RAP), is self-assembled into the pure drug nanocore, and the metal-organic framework (MOF) shell based on coordination between Mn2+ and tannic acid (TA) is coated on the surface to coload an autophagy-inhibiting DNAzyme. The nanosystem efficiently delivers the payloads into tumor cells, and upon endocytosis, the MOF shell is disintegrated to release the therapeutics in response to an acidic endo/lysosome environment and intracellular glutathione (GSH). Notably, the coreleased Mn2+ serves as the cofactor of DNAzyme for effective self-activation, which suppresses the expression of Beclin 1 protein, the key initiator of autophagy, resulting in a significantly strengthened antitumor effect of RAP. Using tumorbearing mouse models, the nanosystem could passively accumulate into the tumor tissue, impose potent gene-silencing efficacy, and thus sensitize chemotherapy to inhibit tumor growth upon intravenous administration, providing opportunities for combined genedrug TNBC therapy.
更多
查看译文
关键词
rapamycin, DNAzyme, self-activation, autophagy, metal-organic framework, stimuli response, cancer therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要