Unbalanced Ssfp For Super-Resolution In Mri

MAGNETIC RESONANCE IN MEDICINE(2021)

引用 4|浏览36
暂无评分
摘要
Purpose: To achieve rapid, low specific absorption rate (SAR) super-resolution imaging by exploiting the characteristic magnetization off-resonance profile in SSFP.Theory and Methods: In the presented technique, low flip angle unbalanced SSFP imaging is used to acquire a series of images at a low nominal resolution that arc then combined in a super-resolution strategy analogous to non-linear structured illumination microscopy. This is demonstrated in principle via Bloch simulations and synthetic phantoms, and the performance is quantified in terms of point-spread function (PSF) and SNR for gray and white matter from field strengths of 0.35T to 9.4T. A k-space reconstruction approach is proposed to account for B-0 effects. This was applied to reconstruct super-resolution images from a test object at 9.4T.Results: Artifact-free super-resolution images were produced after incorporating sufficient preparation time for the magnetization to approach the steady state. High-resolution images of a test object were obtained at 9.4T, in the presence of considerable B-0 inhomogeneity. For gray matter, the highest achievable resolution ranges from 3% of the acquired voxel dimension at 0.35T, to 9% at 9.4T. For white matter, this corresponds to 3% and 10%, respectively. Compared to an equivalent segmented gradient echo acquisition at the optimal flip angle, with a fixed TR of 8 ms, gray matter has up to 34% of the SNR at 9.4T while using a x10 smaller flip angle. For white matter, this corresponds to 29% with a x11 smaller flip angle.Conclusion: This approach achieves high degrees of super-resolution enhancement with minimal RF power requirements.
更多
查看译文
关键词
spatial encoding, SSFP, structured illumination microscopy, super-resolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要