Combined P14arf And Interferon-Beta Gene Transfer To The Human Melanoma Cell Line Sk-Mel-147 Promotes Oncolysis And Immune Activation

FRONTIERS IN IMMUNOLOGY(2020)

引用 7|浏览12
暂无评分
摘要
Immune evasion is an important cancer hallmark and the understanding of its mechanisms has generated successful therapeutic approaches. Induction of immunogenic cell death (ICD) is expected to attract immune cell populations that promote innate and adaptive immune responses. Here, we present a critical advance for our adenovirus-mediated gene therapy approach, where the combined p14ARF and human interferon-beta (IFN beta) gene transfer to human melanoma cells led to oncolysis, ICD and subsequent activation of immune cells. Our results indicate that IFN beta alone or in combination with p14ARF was able to induce massive cell death in the human melanoma cell line SK-MEL-147, though caspase 3/7 activation was not essential. In situ gene therapy of s.c. SK-MEL-147 tumors in Nod-Scid mice revealed inhibition of tumor growth and increased survival in response to IFN beta alone or in combination with p14ARF. Emission of critical markers of ICD (exposition of calreticulin, secretion of ATP and IFN beta) was stronger when cells were treated with combined p14ARF and IFN beta gene transfer. Co-culture of previously transduced SK-MEL-147 cells with monocyte-derived dendritic cells (Mo-DCs) derived from healthy donors resulted in increased levels of activation markers HLA-DR, CD80, and CD86. Activated Mo-DCs were able to prime autologous and allogeneic T cells, resulting in increased secretion of IFN gamma, TNF-alpha, and IL-10. Preliminary data showed that T cells primed by Mo-DCs activated with p14ARF+IFN beta-transduced SK-MEL-147 cells were able to induce the loss of viability of fresh non-transduced SK-MEL-147 cells, suggesting the induction of a specific cytotoxic population that recognized and killed SK-MEL-147 cells. Collectively, our results indicate that p14ARF and IFN beta delivered by our adenoviral system induced oncolysis in human melanoma cells accompanied by adaptive immune response activation and regulation.
更多
查看译文
关键词
melanoma, adenovirus (Ad) vector, oncolysis, immunogenic cell death (ICD), immunotherapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要