Engineering Yarrowia Lipolytica For De Novo Production Of Tetraacetyl Phytosphingosine

JOURNAL OF APPLIED MICROBIOLOGY(2021)

引用 4|浏览13
暂无评分
摘要
Aims To genetically engineer the oleaginous yeast Yarrowia lipolytica for de novo production of tetraacetylphytosphingosine (TAPS), a precursor of phytosphingosine, and optimization of fermentation conditions for high yield.Methods and Results We successfully constructed a TAPS-producing Y. lipolytica CE3 strain by co-expression of Wickerhamomyces ciferrii-derived acetyl transferases, Sli1p and Atf2p. Next, we optimized several environmental factors including temperature, initial pH and C/N ratio for TAPS production in a shake culture. Deletion of LCB4 in CE3 strain increased the volumetric TAPS titre and cell-specific yield to 142 center dot 1 +/- 10 center dot 7 mg(TAPS) l(-1) and 3 center dot 08 +/- 0 center dot 11 mg(TAPS) g(DCW)(-1), respectively, in a shake flask culture incubated for 120 h at 28 degrees C with glycerol as the carbon source. Finally, we developed a 5-l fed-batch process with NaOH-mediated pH control and olive oil as a carbon source, exhibiting 650 +/- 24 mg(TAPS) l(-1) of TAPS production within 56 h of the fermentation.Conclusions The introduction of codon-optimized Sli1p and Atf2p, deletion of LCB4 gene and sexual hybridization, accompanied by specific fermentation conditions, enhanced TAPS yield in Y. lipolytica.Significance and Impact of the Study Our results highlight Y. lipolytica as a promising candidate for the industrial production of TAPS, an important component of cosmetic formulations.
更多
查看译文
关键词
ATF2, ceramides, optimization, SLI1, sphingolipid, tetraacetyl phytosphingosine, tetraacetylphytosphingosine, Yarrowia lipolytica
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要