Novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots for highly efficient adsorption and detection of Cr(VI).

The Science of the total environment(2020)

引用 77|浏览5
暂无评分
摘要
A novel fluorescent lignin-based hydrogel with cellulose nanofibers and carbon dots (CDs) was synthesized for the high-value utilization of lignin and control of hexavalent chromium (Cr(VI)). Its chemical and physical structure was characterized, and its Cr(VI) sorption performance was evaluated. The results demonstrated that 3D porous structures were constructed in this hydrogel. The maximum adsorption capacity of this hydrogel was 599.9 mg/g, and its sorption performance met Freundlich and pseudo-second-order models. Meanwhile, this novel hydrogel exhibited high sensitivity to Cr(VI), with a limit of detection of 11.2 mg/L and a wide linear range from 15 to 200 mg/L. Moreover, its mechanism for efficiently adsorbing and detecting Cr(VI) was analyzed. The results confirmed that the efficient adsorption and detection were due to these 3D porous structures generated by the lignin and cellulose nanofibers modified with CDs. The porous structures provided many active sites and ion transport channels, thereby improving the adsorption, and stabilized the fluorescence signal, thus enhancing the detection.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要