Adaptive Optics Via Pupil Ring Segmentation Improves Spherical Aberration Correction For Two-Photon Imaging Of Optically Cleared Tissues

OPTICS EXPRESS(2020)

引用 4|浏览3
暂无评分
摘要
Optical clearing methods reduce the optical scattering of biological samples and thereby extend optical imaging penetration depth. However, refractive index mismatch between the immersion media of objectives and clearing reagents induces spherical aberration (SA), causing significant degradation of fluorescence intensity and spatial resolution. We present an adaptive optics method based on pupil ring segmentation to correct SA in optically cleared samples. Our method demonstrates superior SA correction over a modal-based adaptive optics method and restores the fluorescence intensity and resolution at high imaging depth. Moreover, the method can derive an SA correction map for the whole imaging volume based on three representative measurements. It facilitates SA correction during image acquisition without intermittent SA measurements. We applied this method in mouse brain tissues treated with different optical clearing methods. The results illustrate that the synaptic structures of neurons within 900 mu m depth can be clearly resolved after SA correction. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要