A New Trend for Indoor Lighting Design Based on A Hybrid Methodology

Journal of Daylighting(2020)

引用 4|浏览0
暂无评分
摘要
Most power system planners are interested in the savings of electrical power consumption. Various references demonstrate that the highest consumed power is by the lighting systems standing around 19% of worldwide energy consumption. This article presents novel design methodology leading to maximizing revenue due to savings in electrical energy consumption through energy efficient installations. This hybrid methodology is built by combining benefits of the two traditional lighting design methods (lumen and specific connected load methods). This results in developing a new mathematical and applicable model with many advantages such as: high accuracy, fast calculations and most economical design. This proposed methodology is supported by MATLAB® package to shorten the long time consumed by conventional procedures and simplify the complex manual calculations. The hybrid method verifies its effectiveness and efficiency for achieving the maximum savings in energies and costs through the detailed discussion of case studies. A comparison with traditional designs will be introduced to ensure the achieved savings in costs leading to high quality and efficiency of power systems. By practically applying this new hybrid technique particularly for the Egyptian residential and commercial sectors, the system is expected to achieve a huge savings in consumed lighting energies and costs, which can reach 4489.433415 million E£ "≈ 280.5895 million $ "USD"" each year. The presented case studies give accurate and promising results for the proposed methodology as a new trend in energy and money saving system, which is verified by implementing two case studies and comparing with results from DIALux program. The results of the proposed methodology are very effective compared with that of conventional methods for marked benchmarking features and validation. MATLAB® simulation results of the proposed technique are implemented to verify its feasibility for any activity.
更多
查看译文
关键词
methodology,lighting systems,designs,energy conservation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要