Micromagnetic modelling of nanorods array-based L10-FeNi/SmCo5 exchange-coupled composites

Journal of Physics: Condensed Matter(2020)

引用 4|浏览0
暂无评分
摘要
Exchange-coupled nanocomposites are considered as the most promising materials for production of high-energy performance permanent magnets, which can exceed neodymium ones in terms of energy product. In this work, micromagnetic simulations of L10-FeNi/SmCo5 composites based on the initially anisotropic structure of nanorods array were performed. Texturing effect on magnetic properties was investigated. It was revealed that even 30 % of anisotropy axes misalignment of grains in L10-FeNi phase would lead to only ≈ 10 % drop of coercivity. To maximize magnetic properties of the composites, parameters of microstructure were optimized for 120 × 120 array of interacting nanorods and were found to be 40 nm nanorod diameter and 12-20 nm interrod distance. The estimated diameter of nanorods and the packing density of the array provide energy product values of 149 kJ m-3. Influence of interrod distance on energy product values was explored. Approaches for production of exchange-coupled composites based on anisotropic nanostructures were proposed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要