A Comprehensive Conductivity Model For Drift And Micro-Tearing Modes

PHYSICS OF PLASMAS(2020)

引用 7|浏览1
暂无评分
摘要
The parallel electrical conductivity is a crucial parameter in the study of the linear stability of drift-modes like the micro-tearing mode (MTM). The conductivity enters by closing the electromagnetic tearing layer equations. Recent progress in the understanding of the pedestal suggests that the MTM could play an important role in its structure and evolution. For this reason, we revisit and improve previous model conductivities. This parameter is generally derived from the linearized drift kinetic equation. In the past literature, it has been computed using either simplified collision operators or neglecting the spatial dependence away from the rational surface. A fully consistent expression for the conductivity that would accurately model the pedestal has not been available. By applying a novel variational procedure and with the full Fokker Plank collision operator, including electron-electron collisions, we compute a closed expression for the parallel electrical conductivity in the form of a rational function.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要