Sirt2 Regulates Cisplatin-Induced Endoplasmic Reticulum Stress Through Heat Shock Factor 1 Deacetylation

NEPHROLOGY DIALYSIS TRANSPLANTATION(2020)

引用 0|浏览4
暂无评分
摘要
Abstract Background and Aims Nephrotoxicity is an important cisplatin-induced adverse reaction and restricts the use of cisplatin to treat malignant tumors. Endoplasmic reticulum (ER) stress is caused by the accumulation of misfolded proteins, and is induced by cisplatin in kidneys. SIRT2 nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase is a member of the sirtuin family, but its role in cisplatin-induced ER stress remains unclear. Method To investigate the effect of SIRT2 on cisplatin-induced ER stress using SIRT2 knockout mice and human proximal tubular epithelial cells (HK-2 cells). We treated cisplatin (20 µg/mL) or induced by intraperitoneal injection of cisplatin (20 mg/kg) and evaluated the changes of ER stress and its signal mechanism. Results Cisplatin administration was found to significantly increase the expressions of PRKR-like ER kinase (PERK), phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), and the C/EBP homologous protein (CHOP) and caspase-12 in the kidneys of SIRT2-wild type mice. However, cisplatin-induced increases in the expressions of p-PERK, p-eIF2α, CHOP and, caspase-12 were diminished in kidneys of SIRT2 knockout mice. In vitro, cisplatin significantly increased the expressions of p-PERK, p-eIF2α, CHOP, and caspase-12 in HK-2 cells. When the effect of SIRT2 on cisplatin-induced ER stress was evaluated using SIRT2-siRNA (ON-TARGET plus human SIRT2 siRNA) or the SIRT2 inhibitors, AGK2 and AK1, knockdown or inhibition of SIRT2 significantly attenuated the cisplatin-induced protein expression of p-PERK, p-eIF2α, CHOP, and caspase-12. Immunoprecipitation studies showed SIRT2 bound physically to heat shock factor (HSF)1 and that HSF1 acetylation was significantly increased by cisplatin. In addition, knockdown of SIRT2 increased cisplatin-induced HSF1 acetylation and increased the expression of heat shock protein (HSP)70. Conclusion These observations suggest that suppression of SIRT2 ameliorates cisplatin-induced ER stress by increasing HSF1 acetylation and HSP expression.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要