Quantifying uncertainty for remote spectroscopy of surface composition

Remote Sensing of Environment(2020)

引用 31|浏览73
暂无评分
摘要
Remote surface measurements by imaging spectrometers play an important role in planetary and Earth science. To make these measurements, investigators calibrate instrument data to absolute units, invert physical models to estimate atmospheric effects, and then determine surface properties from the spectral reflectance. This study quantifies the uncertainty in this process. Global missions demand predictive uncertainty models that can estimate future errors for varied environments and observing conditions. Here we validate uncertainty predictions with remote surface composition retrievals and in situ measurements in a field analogue of Earth and planetary exploration. We consider rover transects at Cuprite, Nevada, and remote observations by NASA's Next-Generation Airborne Visible Infrared Imaging Spectrometer (AVIRIS-NG). We show that accounting for input uncertainties can benefit mineral detection methods such as constrained spectrum fitting. This suggests that operational uncertainty estimates could improve future NASA missions like the Earth Mineral dust source InvesTigation (EMIT) and the Lunar Trailblazer mission, as well as NASA's Decadal Surface Biology and Geology (SBG) Investigation.
更多
查看译文
关键词
Imaging spectroscopy,Geologic mapping,Cuprite Nevada,Calibration visible-shortwave infrared,Atmospheric correction,Statistical methods,Hyperspectral imagers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要