The Role Of Different High Energy Ball Milling Conditions Of Molybdenum Powder On The Resulting Particles Size And Morphology

28TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS (METAL 2019)(2019)

引用 0|浏览2
暂无评分
摘要
High energy ball milling is a powder processing method in which the powder particle size can be decreased to micrometer size in a relatively short period of time. This method is based on the friction and the high energy kinetic collisions between the balls and the trapped powder particles. The milling process is influenced by many process variables such as mainly the rotational speed, ball to powder weight ratio and processing time. In the present study, high energy ball milling process was performed for molybdenum powder using a high energy ball mill under different milling conditions varying the: (i) rotational speed from 600 to 800 rpm, (ii) ball to powder weight ratio of 100: 3 and 100:6, (iii) milling time in the range of 10 to 60 minutes, (iv) process control agent using polyethylene glycol, and (v) milling atmosphere under air or nitrogen. The used initial molybdenum powder was of globular morphology and 100 mu m in particle size. The powders after milling were characterized by a scanning electron microscope (SEM) and a laser diffraction size analysis. The particle size of milled powders was decreased down to 1.1 mu m. As the most effective ball to powder weight ratio was found 100:6 with the milling speed of 800 rpm. The milling time played a crucial role for the refinement of particles up to 45 min, where the further milling had negligible effect on the overall trend of particle size evolution.
更多
查看译文
关键词
High energy ball milling, milling parameters, molybdenum, particle size, granulometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要