Synthesis Of Highly-Branched Au@Agpd Core/Shell Nanoflowers For In Situ Sers Monitoring Of Catalytic Reactions

CHINESE CHEMICAL LETTERS(2020)

引用 12|浏览34
暂无评分
摘要
Alloy and small size nanostructures are favorable to catalytical performance, but not to surface-enhanced Raman spectroscopy (SERS) applications. Integrating SERS and catalytic activity into the nanocrystals with both alloy and small size structures is of great interest in fabrication of SERS platform to in situ monitor catalytical reaction. Herein, we report a facile method to synthesize Au@AgPd trimetallic nanoflowers (Au@AgPd NEs) with both SERS and catalytic activities, through simultaneous selective growth of Ag and Pd on Au core to form highly-branched alloy shell. These nanocrystals have the properties of small sizes, defects abundance, and highly-dispersed alloy shell which offer superior catalytic activity, while the merits of monodisperse, excellent stability, and highly-branched shell and core/alloy-shell structure promise the enhanced SERS activity. We further studied their growth mechanisms, and found that the ratio of Ag to Pd, sizes of Au core, and surfactant cetyltrimethylammonium bromide together determine this special structure. Using this as-synthesized nanocrystals, a monolayer bifunctional platform with both SERS and catalytical activity was fabricated through self-assembly at air/water interface, and applied to in situ SERS monitoring the reaction process of Pd-catalyzed hydrogenation of 4-nitrothiophenol to 4-aminothiophenol. (C) 2020 Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Nanoflower, SERS, Bifunctional platform, AgPd alloy, Growth mechanism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要