Origin of groundwater arsenic in a rural Pleistocene aquifer in Bangladesh depressurized by distal municipal pumping

WATER RESOURCES RESEARCH(2020)

引用 31|浏览30
暂无评分
摘要
Across South Asia, millions of villagers have reduced their exposure to high-arsenic (As) groundwater by switching to low-As wells. Isotopic tracers and flow modeling are used in this study to understand the groundwater flow system of a semi-confined aquifer of Pleistocene (>10 kyr) age in Bangladesh that is generally low in As but has been perturbed by massive pumping at a distance of about 25 km for the municipal water supply of Dhaka. A 10- to 15-m-thick clay aquitard caps much of the intermediate aquifer (>40- to 90-m depth) in the 3-km(2)study area, with some interruptions by younger channel sand deposits indicative of river scouring. Hydraulic heads in the intermediate aquifer below the clay-capped areas are 1-2 m lower than in the high-As shallow aquifer above the clay layer. In contrast, similar heads in the shallow and intermediate aquifer are observed where the clay layer is missing. The head distribution suggests a pattern of downward flow through interruptions in the aquitard and lateral advection from the sandy areas to the confined portion of the aquifer. The interpreted flow system is consistent with(3)H-He-3 ages, stable isotope data, and groundwater flow modeling. Lateral flow could explain an association of elevated As with high methane concentrations within layers of gray sand below certain clay-capped portions of the Pleistocene aquifer. An influx of dissolved organic carbon from the clay layer itself leading to a reduction of initially orange sands has also likely contributed to the rise of As.
更多
查看译文
关键词
arsenic,groundwater,pumping,modeling,Dhaka,Bangladesh
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要