Complete Biodegradation Of Di-N-Butyl Phthalate (Dbp) By A Novel Pseudomonas Sp. Yjb6

SCIENCE OF THE TOTAL ENVIRONMENT(2021)

引用 60|浏览23
暂无评分
摘要
Phthalate acid esters (PAEs) are environmentally ubiquitous and have aroused a worldwide concern due to their threats to environment and human health. Di-n-butyl phthalate (DBP) is one of the most frequently observed PAEs in the environment. In this study, a novel bacterium identified as Pseudomonas sp. YJB6 that isolated from PAEs-contaminated soil was determined to have strong DBP-degrading activity. A complete degradation of DBP in 200 mg/L was achieved within 3 days when YJB6 was cultivated at 31.4 degrees C with an initial inoculation size of 0.6 (OD600) in basic mineral salts liquid medium (MSM), pH 7.6. The degradation curves of DBP (50-2000 mg/L) fitted well the first-order kinetics model, with a half-life (t(1/2)) ranging from 0.86 to 1.88 d. The main degradation intermediates were identified as butyl-ethyl phthalate (BEP), mono-butyl phthalate (MBP), phthalic acid (PA) and benzoic acid (BA), indicating a new complex and complete biodegradation pathway presented by YJB6. DBP might be metabolized through de-esterification, beta-oxidation, and hydrolysis, followed by entering the Krebs cycle of YJB6 as a final step. Strain YJB6 was successfully immobilized with sodium alginate (SA), polyvinyl alcohol (PVA), and SA-PVA. The immobilization significantly improved the stability and adaptability of the cells thus resulting in high volumetric DBP-degrading rates compared to that of the freely suspended cells. In addition, these immobilized cells can be reused for many cycles with well conserved in DBP-degrading activity. The ideal DBP degrading ability of the free and immobilized YJB6 cells suggests that strain YJB6, especially the SA-PVA+ YJB6 promises great potential to remove hazardous PAEs. (C) 2020 Elsevier B.V. All rights reserved.
更多
查看译文
关键词
Phthalate acid esters (PAEs), Degradation kinetics, Metabolic pathway, Immobilization, Bioremediation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要