Predicted As3mt Proteins Methylate Arsenic And Support Two Major Phylogenetic As3mt Groups

CHEMICAL RESEARCH IN TOXICOLOGY(2020)

引用 12|浏览19
暂无评分
摘要
Inorganic arsenic is one of the most toxic and carcinogenic substances in the environment, but many organisms, including humans, methylate inorganic arsenic to mono-, di-, and trimethylated arsenic metabolites, which the organism can excrete. In humans and other eukaryotic organisms, the arsenite methyltransferase (AS3MT) protein methylates arsenite. AS3MT sequences from eukaryotic organisms group phylogenetically with predicted eubacterial AS3MT sequences, which has led to the suggestion that AS3MT was acquired from eubacteria by multiple events of horizontal gene transfer. In this study, we evaluated whether 55 (out of which 47 were predicted based on protein sequence similarity) sequences encoding putative AS3MT orthologues in 47 species from different kingdoms can indeed methylate arsenic. Fifty-three of the proteins showed arsenic methylating capacity. For example, the predicted AS3MT of the human gut bacterium Faecalibacterium prausnitzii methylated arsenic efficiently. We performed a kinetic analysis of 14 AS3MT proteins representing two phylogenetically distinct clades (Group 1 and 2) that each contain both eubacterial and eukaryotic sequences. We found that animal and bacterial AS3MTs in Group 1 rarely produce trimethylated arsenic, whereas Hydra vulgaris and the bacterium Rhodopseudomonas palustris in Group 2 produce trimethylated arsenic metabolites. These findings suggest that animals during evolution have acquired different arsenic methylating phenotypes from different bacteria. Further, it shows that humans carry two bacterial systems for arsenic methylation: one bacterium-derived AS3MT from Group 1 incorporated in the human genome and one from Group 2 in F. prausnitzii present in the gut microbiome.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要