Design, Synthesis, And Biological Evaluation Of A Novel Indoleamine 2,3-Dioxigenase 1 (Ido1) And Thioredoxin Reductase (Trxr) Dual Inhibitor

BIOORGANIC CHEMISTRY(2020)

引用 14|浏览9
暂无评分
摘要
Targeting the Trp-Kyn pathway is an attractive approach for cancer immunotherapy. Thioredoxin reductase (TrxR) enzymes are reactive oxygen species (ROS) modulators that are involved in the tumor cell growth and survival processes. The 4-phenylimidazole scaffold is well-established as useful for indoleamine 2,3-dioxygenase 1 (IDO1) inhibition, while piperlongumine (PL) and its derivatives have been reported to be inhibitors of TrxR. To take advantage of both immunotherapy and TrxR inhibition, we designed a first-generation dual IDO1 and TrxR inhibitor (ZC0101) using the structural combination of 4-phenylimidazole and PL scaffolds. ZC0101 exhibited better dual inhibition against IDO1 and TrxR in vitro and in cell enzyme assays than the uncombined forms of 4-phenylimidazole and PL. It also showed antiproliferative activity in various cancer cell lines, and a selective killing effect between normal and cancer cells. Furthermore, ZC0101 effectively induced apoptosis and ROS accumulation in cancer cells. Knockdown of TrxR1 and IDO1 expression induced cellular enzyme inhibition and ROS accumulation effects during ZC0101 treatment, but only reduced TrxR1 expression was able to improve ZC0101's antiproliferation effect. This proof-of-concept study provides a novel strategy for cancer treatment. ZC0101 represents a promising lead compound for the development of novel antitumor agents that can also be used as a valuable probe to clarify the relationships and mechanisms of cancer immunotherapy and ROS modulators.
更多
查看译文
关键词
IDO1, TrxR, Dual inhibitor, Antitumor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要