Impact of 2 different aerobic periodization training protocols on left ventricular function in patients with stable coronary artery disease: an exploratory study.

APPLIED PHYSIOLOGY NUTRITION AND METABOLISM(2020)

引用 4|浏览42
暂无评分
摘要
We compared the impacts of linear (LP) and nonlinear (NLP) aerobic training periodizations on left ventricular (LV) function and geometry in coronary artery disease (CAD) patients. Thirty-nine CAD patients were randomized to either a 3-month isoenergetic supervised LP or NLP. All underwent standard echocardiography with assessment of 3D LV ejection fraction (LVEF), diastolic function, strain (global longitudinal, radial, and circumferential), and strain rate at baseline and study end. Training was performed 3 times/week and included high-intensity interval and moderate-intensity continuous training sessions. Training load was progressively increased in the LP group, while it was deeply increased and intercepted with a recovery week each fourth week in the NLP group. For the 34 analyzed patients, we found similar improvements for 3D LVEF (effect size (ES): LP, 0.29; NLP, 0.77), radial strain (ES: LP, 0.58; NLP, 0.48), and radial strain rate (ES: LP, 0.87; NLP, 0.17) in both groups (time for all: p ≤ 0.01). All other parameters of cardiac function remained similar. In conclusion, NLP and LP led to similar improvements in 3D LVEF and radial strain, suggesting a favourable positive cardiac remodelling through myofibers reorganization. These findings must be investigated in patients with more severe cardiac dysfunction. The study was registered on ClinicalTrials.gov (NCT03443193). Novelty: Linear and nonlinear periodization programs improved radial strain, accompanied by improvement of ejection fraction. Both aerobic periodization programs did not negatively impact cardiac function in coronary artery disease patients.
更多
查看译文
关键词
cardiac remodelling, aerobic exercise training, coronary heart disease, cardiac rehabilitation, secondary prevention, cardiac function
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要