From Many-Body Oscillations To Thermalization In An Isolated Spinor Gas

PHYSICAL REVIEW LETTERS(2021)

引用 19|浏览9
暂无评分
摘要
The dynamics of a many-body system can take many forms, from a purely reversible evolution to fast thermalization. Here we show experimentally and numerically that an assembly of spin-1 atoms all in the same spatial mode allows one to explore this wide variety of behaviors. When the system can be described by a Bogoliubov analysis, the relevant energy spectrum is linear and leads to undamped oscillations of many-body observables. Outside this regime, the nonlinearity of the spectrum leads to irreversibility, characterized by a universal behavior. When the integrability of the Hamiltonian is broken, a chaotic dynamics emerges and leads to thermalization, in agreement with the eigenstate thermalization hypothesis paradigm.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要