Organoselenium mild electrophiles in the inhibition of Mpro and SARSCoV 2 replication

ChemRxiv(2020)

引用 4|浏览9
暂无评分
摘要
New Ebselen-like derivatives resulted to be very strong in vitro inhibitors of SARS-CoV-2 main protease. We demonstrated that this activity mainly depends on the electrophilicity of the selenium atom that is considerably higher in the N-substituted 1,2- benzoselenazol-3(2H)-ones respect to the corresponding diselenides allowing it to be rapidly attached by free thiols affording sulfur-selenium intermediates that are further subjected to thiol exchange processes. This data paints a very complex scenario that requires us to consider Ebselen and Ebselen-like derivatives as potential electrophilic substrates for the several other free thiols present in the cell beside the target free cysteine. The sulfur selenium intermediates are milder electrophiles that could be theoretically implicated in both the detoxification process as well as in the final enzymatic inhibition. We here demonstrated that the in vitro inhibition activity is not fully reproduced in the prevention of viral replication in the cell-based assay. This indicates that the structure of the substituents introduced in the Ebselen scaffold is a crucial factor to control the reactivity of the selenated molecule in the network of thiol exchanges, as well as for molecular recognition of the targeted enzymatic cysteine. For this reason, an in-depth investigation is strongly desirable to better understand how to increase the activity and the selectivity of Ebselen derivatives overcoming the issues of the apparent PAINS-like role of Ebselen. Furthermore, besides the antiviral activity, thee selected compounds also showed a different ability to reduce the virus-induced cytopathic effect, indicating that other mechanisms could be implicated. One may consider here the well-known cytoprotective antioxidant activity of Ebselen and its derivatives.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要