Dysregulation Of Bmp9/Bmpr2/Smad Signalling Pathway Contributes To Pulmonary Fibrosis And Pulmonary Hypertension Induced By Bleomycin In Rats

BRITISH JOURNAL OF PHARMACOLOGY(2021)

引用 17|浏览42
暂无评分
摘要
Background and Purpose Pulmonary hypertension related to pulmonary fibrosis is classed as WHO Group III, one of the most common groups which lacks effective treatment options. In this study, we aimed to uncover the underlying mechanisms, particularly the involvement of the BMP9/BMPR2/SMAD signalling pathway, in this subtype of pulmonary hypertension.Experimental Approach Male Sprague Dawley rats were used to establish a model of pulmonary hypertension with pulmonary fibrosis, induced by bleomycin. Haemodynamic and lung functions were measured, along with histological and immunohistochemical examinations. Primary cultures of rat pulmonary microvascular endothelial cells (PMVECs) were analysed with western blots, apoptosis assays and immunohistochemistry.Key Results Early (7 days) after bleomycin treatment of rats, pulmonary arterial thickening and severe loss of pulmonary arterial endothelium were observed, followed (14 days) by increased right ventricular systolic pressure and right ventricular hypertrophy. Marked down-regulation of the BMP9/BMPR2/SMAD signalling pathway was markedly down-regulated in lung tissues from bleomycin-treated rats (throughout the 7- to 35-day treatment period) and bleomycin-treated rat PMVECs, along with excessive cell apoptosis and loss of pulmonary arterial endothelium. Treatment with recombinant human bone morphogenetic protein 9 (rhBMP9) attenuated these aspects of bleomycin-induced pulmonary hypertension, by restoring disrupted BMP9/BMPR2/SMAD signalling.Conclusion and Implications In bleomycin-treated rats, early and persisting suppression of the BMP9/BMPR2/SMAD signalling pathway triggered severe loss of pulmonary arterial endothelium and subsequent pulmonary arterial vascular remodelling, contributing to the development of pulmonary hypertension. Therapeutic approaches reinforcing BMP9/BMPR2/SMAD signalling might be ideal strategies for this subtype of pulmonary hypertension.
更多
查看译文
关键词
bleomycin, BMP9, BMPR2, endothelial cell, pulmonary hypertension, Smad1, 5, 9
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要