Density Functional Tight Binding Theory Approach For The Co2 Reduction Reaction Paths On Anatase Tio2 Surfaces

ACS OMEGA(2020)

引用 2|浏览9
暂无评分
摘要
Herein, we have investigated the CO2 reduction paths on the (101) anatase TiO2 surface using an approach based on the density functional tight binding (DFTB) theory. We analyzed the reaction paths for the conversion of carbon dioxide to methane by performing a large number of calculations with intermediates placed in various orientations and locations at the surface. Our results show that the least stable intermediate is CO2 H and therefore a key bottleneck is the reduction of CO2 to formic acid. Hydrogen adsorption is also weak and would also be a limiting factor, unless very high pressures of hydrogen are used. The results from our DFTB approach are in good agreement with the hybrid functional based density functional theory calculations presented in the literature.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要