Acute warming in winter eliminates chemical alarm responses in threatened Qinling lenok Brachymystax lenok tsinlingensis.

SCIENCE OF THE TOTAL ENVIRONMENT(2020)

引用 5|浏览9
暂无评分
摘要
Knowledge of how temperature influences animal behavior is critical to understanding and predicting impacts of changing climate on individual species and biotic interactions. However, the effects of climate change, especially winter warming in freshwater systems, on fish behaviors and the use of chemical information have been largely unexplored. Qinling lenok Brachymystax lenok tsinlingensis, an endangered salmonid species endemic to the Qinling Mountain Range, China, is currently experiencing population decline and is a potential biological indicator of warming winter climate effects on freshwater fishes due to its temperature sensitivity and required habitat of small, cold-water streams. Our objective was to determine if transient winter warming (increases of ~4 °C) consistent with seasonal maxima in line with near-future climate projections will affect antipredator responses to damage-released chemical alarm cues in B. lenok tsinlingensis. Wild fish were collected during winter and held in captivity under food deprivation for four days, during which half were acclimated to a warmer temperature (6 °C) while the other half were maintained at ambient levels (2 °C). Individual acclimated fish were then exposed to injections of either conspecific alarm cues to simulate elevated predation risk or stream water as a control treatment. Focal fish demonstrated responses consistent with antipredator behaviors to alarm cues at ambient temperature, but no significant behavioral responses to alarm cues were found relative to controls at the warmer temperature. These results support our hypothesis that winter warming will negatively influence antipredator responses and indicate that projected warmer temperature patterns in winter may have significant impacts on chemically mediated predator-prey interactions in cold-water streams.
更多
查看译文
关键词
Antipredator behavior, Chemical information, Climate change, Damage-released chemical alarm cues, Salmonids, Threat detection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要