Assessing tumor centrality in lung stereotactic ablative body radiotherapy (SABR): the effects of variations in bronchial tree delineation and potential for automated methods.

Medical dosimetry : official journal of the American Association of Medical Dosimetrists(2020)

引用 5|浏览49
暂无评分
摘要
Accurate delineation of the proximal bronchial tree (PBT) is crucial for appropriate assessment of lung tumor centrality and choice of Stereotactic Ablative Body Radiotherapy (SABR) dose prescription. Here, we investigate variabilities in manual PBT delineation and their potential to influence assessing lesion centrality. A fully automatic, intensity-based tool for PBT contouring and measuring distance to the target is also described. This retrospective analysis included a total of 61 patients treated with lung SABR. A subset of 41 patients was used as a training dataset, containing clinical PBT contour and additional subsequently generated manual contours. The tool was optimized and compared against manual contours in terms of volume, distance to the target and various overlap/similarity metrics. The remaining 20 patients were used as a validation dataset to investigate the dosimetric effects of variations between manual and automatic PBT contours. Considerable interobserver variability was observed, particularly in identifying the superior and inferior borders of the PBT. Automatic PBT contours were comparable to manual contours with average Dice of 0.63 to 0.79 and mean distance to agreement of 1.78 to 3.34 mm. No significant differences in dosimetric parameters were found between automatically and manually generated contours. A moderate negative correlation was found between PBT maximum dose and distance to the lesion (p < 0.05). Variability in manual PBT delineation may result in inconsistent assessment of tumor centrality. Automatic contouring can help standardize clinical practice, support investigations into the link between SABR outcomes and lesion proximity to central airways and the development of predictive toxicity models that incorporate precise measurements of tumor location in relation to high-risk organs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要