Flux Modularity, F-Theory, and Rational Models

arxiv(2020)

引用 0|浏览6
暂无评分
摘要
In recent work, we conjectured that Calabi-Yau threefolds defined over $\mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will address two natural follow-up questions, of both a physical and mathematical nature, that are surprisingly closely related. First, in passing from a complex manifold to a rational variety, as we must do to study modularity, we are implicitly choosing a "rational model" for the threefold; how do different choices of rational model effect our results? Second, the same modular forms are associated to elliptic curves over $\mathbb{Q}$; are these elliptic curves found anywhere in the physical setup? By studying the F-theory uplift of the supersymmetric flux vacua found in the compactification of IIB string theory on (the mirror of) the Calabi-Yau hypersurface $X$ in $\mathbb{P}(1,1,2,2,2)$, we find a one-parameter family of elliptic curves whose associated eigenforms exactly match those associated to $X$. Actually, we find two such families, corresponding to two different choices of rational models for the same family of Calabi-Yaus.
更多
查看译文
关键词
flux,models,f-theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要