Organ-specific ECM arrays for investigating Cell-ECM interactions during stem cell differentiation.

BIOFABRICATION(2021)

引用 3|浏览19
暂无评分
摘要
Pluripotent stem cells are promising source of cells for tissue engineering, regenerative medicine and drug discovery applications. The process of stem cell differentiation is regulated by multi-parametric cues from the surrounding microenvironment, one of the critical one being cell interaction with extracellular matrix (ECM). The ECM is a complex tissue-specific structure which is an important physiological regulator of stem cell function and fate. Recapitulating this native ECM microenvironment niche is best facilitated by decellularized tissue/organ derived ECM, which can faithfully reproduce the physiological environment with high fidelity to in vivo condition and promote tissue-specific cellular development and maturation. Recognizing the need for organ specific ECM in a 3D culture environment in driving phenotypic differentiation and maturation of hPSCs, we fabricated an ECM array platform using native-mimicry ECM from decellularized organs (namely pancreas, liver and heart), which allows cell-ECM interactions in both 2D and 3D configuration. The ECM array was integrated with rapid quantitative imaging for a systematic investigation of matrix protein profiles and sensitive measurement of cell-ECM interaction during hPSC differentiation. We tested our platform by elucidating the role of the three different organ-specific ECM in supporting induced pancreatic differentiation of hPSCs. While the focus of this report is on pancreatic differentiation, the developed platform is versatile to be applied to characterize any lineage specific differentiation.
更多
查看译文
关键词
organ derived extracellular matrix,human pluripotent stem cell,organ decellulariation,pancreatic differentiation,ECM array
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要