The effect of nanoparticle in reduction of critical fluid velocity in pipes conveying fluid

M. M. Ghaitani,A. Majidian,V Shokri

ADVANCES IN CONCRETE CONSTRUCTION(2020)

引用 1|浏览0
暂无评分
摘要
This paper deal with the critical fluid velocity response of nanocomposite pipe conveying fluid based on numerical method. The pressure of fluid is obtained based on perturbation method. The motion equations are derived based on classical shell theory, energy method and Hamilton's principle. The shell is reinforced by nanoparticles and the distribution of them are functionally graded (FG). The mixture rule is applied for obtaining the equivalent material properties of the structure. Differential quadrature method (DQM) is utilized for solution of the motion equations in order to obtain the critical fluid velocity. The effects of different parameters such asCNT nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios and internal fluid are presented on the critical fluid velocity response structure. The results show that with increasing the CNT nanoparticles, the critical fluid velocity is increased. In addition, FGX distribution of nanoparticles is the best choice for reinforcement.
更多
查看译文
关键词
critical fluid velocity,pipeline,internal fluid,Differential Quadrature Method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要