Multi-Subject Task-Related Fmri Data Analysis Via Generalized Canonical Correlation Analysis

42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20(2020)

引用 2|浏览24
暂无评分
摘要
Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. It measures brain activity, by detecting local changes of Blood Oxygen Level Dependent (BOLD) signal in the brain, over time, and can be used in both task-related and resting-state studies. In task-related studies, our aim is to determine which brain areas are activated when a specific task is performed. Various unsupervised multivariate statistical methods are being increasingly employed in fMRI data analysis. Their main goal is to extract information from a dataset, often with no prior knowledge of the experimental conditions. Generalized canonical correlation analysis (gCCA) is a well known statistical method that can be considered as a way to estimate a linear subspace, which is "common" to multiple random linear subspaces. We propose a new fMRI data generating model which takes into consideration the existence of common task-related and resting-state components. We estimate the common spatial task-related component via a two-stage gCCA. We test our theoretical results using real-world fMRI data. Our experimental findings corroborate our theoretical results, rendering our approach a very good candidate for multi-subject task-related fMRI processing.
更多
查看译文
关键词
Brain,Brain Mapping,Data Analysis,Humans,Magnetic Resonance Imaging,Multivariate Analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要