Plant-Inspired Soft Bistable Structures Based on Hygroscopic Electrospun Nanofibers

ADVANCED MATERIALS INTERFACES(2020)

引用 49|浏览17
暂无评分
摘要
The tissue composition and microstructures of plants have dynamic morphologies that change according to their environments. Recently, multifunctional responsive materials and smart structures also took inspiration from these plants' features. Dionaea muscipula leaves provide a remarkable example of an optimized structure that, owing to the synergistic integration of bistability, material, and geometrical properties, permits to overcome the performance limits of purely diffusive processes. In this paper, a hygroscopic bistable structure (HBS) inspired by the Venus flytrap leaves is presented, obtained by bonding prestretched poly(dimethylsiloxane) (PDMS) layers prior to depositing electrospun polyethylene oxide (PEO) nanofibers. A hygroresponsive bilayer (HBL) is also obtained by electrospinning of PEO on an unstretched PDMS layer. The hygroscopic material (Young's modulus and hygroscopic expansion) is mechanically characterized so as to predict the response time of a bending HBL in response to a step humidity variation. The HBS response time (approximate to 1 s) is sensibly lower than the one of purely diffusive HBL (approximate to 10 s) thanks to bistability. An illustrative implementation is also presented, exploiting an HBS to trigger the curvature of a PDMS optical focusing system. The developed plant-inspired soft bistable structure can also be used for sensing (e.g., humidity), energy harvesting, as well as advanced soft robotics applications.
更多
查看译文
关键词
bioinspiration,bistability,electrospinning,hygroscopic nanofibers,soft robots
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要