Narrowband Modulation Two-Dimensional Mass Spectrometry And Label-Free Relative Quantification Of Histone Peptides

ANALYTICAL CHEMISTRY(2020)

引用 6|浏览4
暂无评分
摘要
Two-dimensional mass spectrometry (2D MS) on a Fourier transform ion cyclotron resonance (FT-ICR) mass analyzer allows for tandem mass spectrometry without requiring ion isolation. In the ICR cell, the precursor ion radii are modulated before fragmentation, which results in modulation of the abundance of their fragments. The resulting 2D mass spectrum enables a correlation between the precursor and fragment ions. In a standard broadband 2D MS, the range of precursor ion cyclotron frequencies is determined by the lowest mass-to-charge (m/z) ratio to be fragmented in the 2D MS experiment, which leads to precursor ion m/z ranges that are much wider than necessary, thereby limiting the resolving power for precursor ions and the accuracy of the correlation between the precursor and fragment ions. We present narrowband modulation 2D MS, which increases the precursor ion resolving power by reducing the precursor ion m/z range, with the aim of resolving the fragment ion patterns of overlapping isotopic distributions. In this proof-of-concept study, we compare broadband and narrowband modulation 2D mass spectra of an equimolar mixture of histone peptide isoforms. In narrowband modulation 2D MS, we were able to separate the fragment ion patterns of all C-13 isotopes of the different histone peptide forms. We further demonstrate the potential of narrowband 2D MS for label-free quantification of peptides.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要