Iron Chelator-Mediated Anoxic Biotransformation of Lignin by Novel sp., Tolumonas lignolytica BRL6-1

biorxiv(2020)

引用 0|浏览57
暂无评分
摘要
Lignin is the second most abundant carbon polymer on earth and despite having more fuel value than cellulose, it currently is considered a waste byproduct in many industrial lignocellulose applications. Valorization of lignin relies on effective and green methods of delignification, with a growing interest in the use of microbes. Here we investigate the physiology and lignin biotransformation mechanisms of the novel facultative anaerobic bacterium, BRL6-1, under anoxic conditions. Physiological and biochemical changes were compared between cells grown anaerobically in either lignin-amended or unamended conditions. In the presence of lignin, BRL6-1 had a higher biomass and shorter lag phase compared to unamended conditions, and 14% of the proteins determined to be significantly higher in abundance by log fold-change of 2 or greater were related to Fe(II) transport in early exponential phase. Ferrozine assays of the supernatant (<10 kDa fraction) confirmed that Fe(III) was bound to lignin and reduced to Fe(II) only in the presence of BRL6-1, suggesting redox activity by the cells. LC-MS/MS analysis of the secretome showed an extra band at 20 kDa in lignin-amended conditions. Protein sequencing of this band identified a protein of unknown function with homology to enzymes in the radical SAM superfamily. Expression of this protein in lignin-amended conditions suggests its role in radical formation. From our findings, we suggest that BRL6-1 is using a protein in the radical SAM superfamily to interact with the Fe(III) bound to lignin and reducing it to Fe(II) for cellular use, increasing BRL6-1 yield under lignin-amended conditions. This interaction potentially generates organic free radicals and causes a radical cascade which could modify and depolymerize lignin. Further research should clarify the extent to which this mechanism is similar to previously described aerobic chelator-mediated Fenton chemistry or radical producing lignolytic enzymes, such as lignin peroxidases, but under anoxic conditions.
更多
查看译文
关键词
lignin depolymerization,lignin degradation,anaerobic bacteria
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要