Belowground changes to community structure alter methane-cycling dynamics in Amazonia

Environment International(2020)

引用 21|浏览29
暂无评分
摘要
Amazonian rainforest is undergoing increasing rates of deforestation, driven primarily by cattle pasture expansion. Forest-to-pasture conversion has been associated with changes to ecosystem processes, including substantial increases in soil methane (CH4) emission. The drivers of this change in CH4 flux are not well understood. To address this knowledge gap, we measured soil CH4 flux, environmental conditions, and belowground microbial community attributes across a land use change gradient (old growth primary forest, cattle pasture, and secondary forest regrowth) in two Amazon Basin regions. Primary forest soils exhibited CH4 uptake at modest rates, while pasture soils exhibited CH4 emission at high but variable rates. Secondary forest soils exhibited low rates of CH4 uptake, suggesting that forest regrowth following pasture abandonment could reverse the CH4 sink-to-source trend. While few environmental variables were significantly associated with CH4 flux, we identified numerous microbial community attributes in the surface soil that explained substantial variation in CH4 flux with land use change. Among the strongest predictors were the relative abundance and diversity of methanogens, which both increased in pasture relative to forests. We further identified individual taxa that were associated with CH4 fluxes and which collectively explained ~50% of flux variance. These taxa included methanogens and methanotrophs, as well as taxa that may indirectly influence CH4 flux through acetate production, iron reduction, and nitrogen transformations. Each land type had a unique subset of taxa associated with CH4 fluxes, suggesting that land use change alters CH4 cycling through shifts in microbial community composition. Taken together, our results suggest that changes in CH4 flux from agricultural conversion could be driven by microbial responses to land use change in the surface soil, with both direct and indirect effects on CH4 cycling. This demonstrates the central role of microorganisms in mediating ecosystem responses to land use change in the Amazon Basin.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要