SARS-CoV-2 Quasispecies provides insight into its genetic dynamics during infection

biorxiv(2020)

引用 2|浏览10
暂无评分
摘要
A novel coronavirus disease (COVID-19) caused by SARS-CoV-2 has been pandemic worldwide. The genetic dynamics of quasispecies afford RNA viruses a great fitness on cell tropism and host range. However, no quasispecies data of SARS-CoV-2 have been reported yet. To explore quasispecies haplotypes and its transmission characteristics, we carried out single-molecule real-time (SMRT) sequencing of the full-length of SARS-CoV-2 spike gene within 14 RNA samples from 2 infection clusters, covering first-to third-generation infected-patients. We observed a special quasispecies structure of SARS-CoV-2 (modeled as ‘One-King’): one dominant haplotype (mean abundance ~70.15%) followed by numerous minor haplotypes (mean abundance < 0.10%). We not only discovered a novel dominant haplotype of F but also realized that minor quasispecies were also worthy of attention. Notably, some minor haplotypes (like F and currently pandemic one G) could potentially reveal adaptive and converse into the dominant one. However, minor haplotypes exhibited a high transmission bottleneck (~6% could be stably transmitted), and the new adaptive/dominant haplotypes were likely originated from genetic variations within a host rather than transmission. The evolutionary rate was estimated as 2.68-3.86 × 10 per site per year, which was larger than the estimation at consensus genome level. The ‘One-King’ model and conversion event expanded our understanding of the genetic dynamics of SARS-CoV-2, and explained the incomprehensible phenomenon at the consensus genome level, such as limited cumulative mutations and low evolutionary rate. Moreover, our findings suggested the epidemic strains may be multi-host origin and future traceability would face huge difficulties.
更多
查看译文
关键词
Quasispecies,SARS-CoV-2,COVID-19,Spike gene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要