Targeting RNA Polymerase I transcription synergises with TOP1 inhibition in potentiating the DNA damage response in high-grade serous ovarian cancer

biorxiv(2019)

引用 2|浏览5
暂无评分
摘要
Limited effective therapeutic options are available for patients with recurrent high-grade serous carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. We have shown efficacy in poly-ADP ribose polymerase (PARP) inhibitor-resistant HGSC for the RNA Polymerase I (Pol I) transcription inhibitor CX-5461 through its ability to activate a nucleolar-associated DNA damage response (DDR). Here, we screen the protein-coding genome to identify potential targets whose inhibition enhances the efficacy of CX-5461. We identify a network of cooperating inhibitory interactions, including components of homologous recombination (HR) DNA repair and DNA topoisomerase 1 (TOP1). We highlight that CX-5461 combined with topotecan, a TOP1 inhibitor used as salvage therapy in HGSC, induces robust cell cycle arrest and cell death in a panel of HR-proficient HGSC cell lines. The combination potentiates a nucleolar-associated DDR via recruitment of phosphorylated replication protein A (RPA) and ataxia telangiectasia and Rad3 related protein (ATR). CX-5461 plus low-dose topotecan cooperate to potently inhibit xenograft tumour growth, indicating the potential for this strategy to improve salvage therapeutic regimens to treat HGSC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要