A unified role for membrane-cortex detachment during cell protrusion initiation

biorxiv(2019)

引用 3|浏览0
暂无评分
摘要
Cell morphogenesis employs a diversity of membrane protrusions. They are discriminated by differences in force generation. Actin polymerization is the best studied mechanism of force generation, but growing interest in how variable molecular conditions and microenvironments alter morphogenesis has revealed other mechanisms, including intracellular pressure. Here, we show that local depletion of membrane cortex links is an essential step in the initiation of both pressure-based and actin-based protrusions. This observation challenges the quarter-century old Brownian ratchet model of actin-driven membrane protrusion, which requires an optimal balance of actin filament growth and membrane tethering. An updated model confirms membrane-filament detachment is necessary to activate the ratchet mechanism. These findings unify the regulation of different protrusion types, explaining how cells generate robust yet flexible strategies of morphogenesis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要