Unveiling The Synergistic Role Of Oxygen Functional Groups In The Graphene-Mediated Oxidation Of Glutathione

ACS APPLIED MATERIALS & INTERFACES(2020)

引用 10|浏览10
暂无评分
摘要
This is the first report of an atomic-scale direct oxidation mechanism of the thiol group in glutathione (GSH) by epoxides on graphene oxide (GO) at room temperature. The proposed reaction mechanism is determined using a coupled experimental and computational approach; active sites for the reaction are determined through examination of GO surface chemistry changes before and after exposure to GSH, and density functional theory (DFT) calculations determine the reaction barriers for the possible GO-GSH reaction schemes. The findings build on the previously established catalytic mechanism of GSH oxidation by graphenic nanocarbon surfaces and importantly identify the direct reaction mechanism which becomes important in low-oxygen environments. Experimental results suggest epoxides as the active sites for the reaction with GSH, which we confirm using DFT calculations of reaction barriers and further identify a synergism between the adjacent epoxide and hydroxyl groups on the GO surface. The direct oxidation mechanism at specific oxygen sites offers insight into controlling GO chemical reactivity through surface chemistry manipulations. This insight is critical for furthering our understanding of GO oxidative stress pathways in cytotoxicity as well as for providing rational material design for GO applications that can leverage this reaction.
更多
查看译文
关键词
graphene oxide, epoxide, hydroxyl, thiol, disulfide, density functional theory (DFT)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要