Immune-Enhancing Activity of Aqueous Extracts from Artemisia rupestris L. via MAPK and NF-kB Pathways of TLR4/TLR2 Downstream in Dendritic Cells.

VACCINES(2020)

引用 6|浏览10
暂无评分
摘要
Artemisia rupestris L. has long been used as a traditional herbal medicine owing to its immunomodulatory activity. Aqueous extracts of Artemisia rupestris L. (AEAR) contain the main functional component and can activate the maturation of dendritic cells (DCs) and enhance the adaptive immunity as the adjuvant against infections. To explore the underlying mechanism of immunomodulatory activities of AEAR, DCs were produced from bone-marrow cells of mice and the effects of AEAR on cell viability were assessed by the Cell Counting Kit 8 (CCK8) method and annexin V/propidium iodide staining assays. Then, the effects of AEAR on the morphology, maturation, and function of DCs were detected using a microscope, flow cytometry-based surface receptor characterization, and endocytosis assays. The secretion levels of cytokines were then analyzed with enzyme-linked immunosorbent assay (ELISA). The activation state of DCs was evaluated by the mixed lymphocyte reaction (MLR). The activity of MAPKs and NF-kappa B pathways, which were involved in the regulation of AEAR on DCs, was further detected by Western blot. AEAR did not have a cytotoxic effect on DCs or mouse splenocytes. AEAR remarkably enhanced the phenotypic maturation of DCs and promoted the expression of costimulatory molecules and the secretion of cytokines in DCs. AEAR also significantly decreased the phagocytic ability of DCs and augmented the abilities of DCs to present antigens and stimulate allogeneic T-cell proliferation. Simultaneously, AEAR potently activated toll-like receptor (TLR)4-/TLR2-related MAPKs and induced the degradation of I kappa B and the translocation of NF-kappa B. In short, AEAR can profoundly enhance the immune-modulating activities of DCs via TLR4-/TLR2-mediated activation of MAPKs and NF-kappa B signaling pathways and is a promising candidate immunopotentiator for vaccines.
更多
查看译文
关键词
water-extractable polysaccharides,Artemisia rupestris L.,dendritic cells,toll-like receptors,immunomodulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要