Cryo-EM visualization of an active high open probability CFTR ion channel

biorxiv(2018)

引用 3|浏览30
暂无评分
摘要
The Cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, crucial to epithelial salt and water homeostasis, and defective due to mutations in its gene in patients with cystic fibrosis is a unique member of the large family of ATP-binding cassette transport proteins. Regulation of CFTR channel activity is stringently controlled by phosphorylation and nucleotide binding. Structural changes that underlie transitions between active and inactive functional states are not yet fully understood. Indeed the first 3D structures of dephosphorylated, ATP-free and phosphorylated ATP-bound states were only recently reported. Here we have determined the structure of inactive and active states of a thermally stabilized CFTR with very high channel open probability, confirmed after reconstitution into proteoliposomes. The unique repositioning of the TMHs and R domain density that we observe provide insights into the structural transition between active and inactive functional states of CFTR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要