Three-Dimensional Porous Ti3C2Tx MXene-Graphene Hybrid Films for Glucose Biosensing

ACS APPLIED NANO MATERIALS(2019)

引用 100|浏览12
暂无评分
摘要
Incorporating two-dimensional (2D) graphene sheets into a 3D graphene structure provides porous structures to bind enzyme but with low enzyme affinity and unstable structure because of removal of the surficial functional group and the flexibility of graphene sheets. To address this issue, we herein constructed a 3D porous Ti3C2Tx MXene-graphene (MG) hybrid film through a facile mixing drying process. Ti3C2Tx MXene nanosheets (MNS) with hydrophilic groups on the rigid flakes endowed the MG hybrid film with open porous structure and a highly hydrophilic miroenvironment. By simply controlling the content of Ti3C2Tr MNS and graphene sheets, the sizes of the internal pores were accordingly tunable. The 3D porous hybrid film, fabricated from Ti3C2Tx MNS and graphene sheets (weight ratios of 1:2 abd 1:3), supplied more open structure to facilitate the glucose oxidase (GOx) entering the internal pores, which probably enhanced the stable immobilization and retaining of the GOx in the film. As a result, the as-proposed biosensor exhibited prominent electrochemical catalytic capability toward glucose biosensing, which was finally applied for glucose assay in sera. The preparation of the size-controlled 3D porous hybrid film provided a method for effectively binding enzymes/protein further to develop elegant biosensors.
更多
查看译文
关键词
Ti3C2T MXene,graphene,2D nanomaterial,3D porous,glucose,glucose oxidase
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要