Physiological, biochemical and genetic responses of Caucasian tea (Camellia sinensis (L.) Kuntze) genotypes under cold and frost stress.

PEERJ(2020)

引用 15|浏览4
暂无评分
摘要
BACKGROUND:Cold and frost are two serious factors limiting the yield of many crops worldwide, including the tea plant (Camellia sinensis (L.) Kuntze). The acclimatization of tea plant from tropical to temperate climate regions resulted in unique germplasm in the North-Western Caucasus with extremely frost-tolerant genotypes. METHODS:The aim of the current research was to evaluate the physiological, biochemical and genetic responses of tolerant and sensitive tea cultivars exposed to cold (0 to +2 °C for 7 days) and frost (-6 to -8 °C for 5 days). Relative water content, cell membranes integrity, pH of the cell sap, water soluble protein, cations, sugars, amino acids were measured under cold and frost. Comparative expression of the following genes ICE1, CBF1, WRKY2, DHN1, DHN2, DHN3, NAC17, NAC26, NAC30, SnRK1.1, SnRK1.2, SnRK1.3, bHLH7, bHLH43, P5CS, LOX1, LOX6, LOX7 were analyzed. RESULTS:We found elevated protein (by 3-4 times) and cations (potassium, calcium and magnesium) contents in the leaves of both cultivars under cold and frost treatments. Meanwhile, Leu, Met, Val, Thr, Ser were increased under cold and frost, however tolerant cv. Gruzinskii7 showed earlier accumulation of these amino acids. Out of 18 studied genes, 11 were expressed at greater level in the frost- tolerant cultivar comparing with frost-sensitive one: ICE1, CBF1, WRKY2, DHN2, NAC17, NAC26, SnRK1.1, SnRK1.3, bHLH43, P5CS and LOX6. Positive correlations between certain amino acids namely, Met, Thr, Leu and Ser and studied genes were found. Taken together, the revealed cold responses in Caucasian tea cultivars help better understanding of tea tolerance to low temperature stress and role of revealed metabolites need to be further evaluated in different tea genotypes.
更多
查看译文
关键词
Camellia sinensis,Frost tolerance,Amino acids content,Gene expression,Cations,Osmotic stress,Plant physiology,Climate adaptation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要